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Abstract-An examination is made of the temperature distribution in the thin thermal boundary layer 
induced in the sub-surface of a fast rotating cylinder subject to prescribed surface heat fluxes. Based on an 
asymptotic analysis, a series solution for the temperature field is obtained and an algorithm for the efficient 
computation of the series suggested. The solution has numerous advantages over those of previous studies 
for its simplicity and free from numerical instability and excessive demand on computing time, the latter 
drawbacks being typical of numerical solutions of heat transfer in advection-dominated regions. The 
closed-formed solution derived in this paper provides further insight into the physics of the problem and 
allows for parametric variations to be examined readily. This study finds applications in various industrial 

processes including strip rolling and grinding. 

1. INTRODUCTION 

MANY INDUSTRIAL processes involve a rotating cyl- 

inder subject to heating and cooling over its surface, 
as shown in Fig. 1. A common feature of the heating is 

that it spans over a very small zone, normally induced 
when the cylinder is in contact with another flat or 
cylindrical object and hence the arc of contact is usu- 
ally very small (such as in flat rolling, grinding and 
machining). At steady-state, the rate of heat input on 
the cylinder surface must equal the heat extraction 
rate. Because of the normally high rotational speed of 
the cylinder, the penetration of the surface heat fluxes 
is extremely small and a thin thermal boundary layer, 
in which the temperature varies rapidly, exists in the 
cylinder sub-surface. Beyond the boundary layer, the 
temperature of the cylinder is largely uniform. The 
study of this thermal boundary layer is important 
since the maximum and minimum temperatures 
attained, as well as the thermal gradients in the cylin- 
der, often influence the operating characteristics of 
the industrial process concerned. In addition, this 
information enables the thermal fatigue on the 
cylinder surface to be evaluated. 

Because of the extreme rapid variation of the tem- 
perature in both circumferential and radial directions, 
especially when the heating zone is small and the 
rotational speed is high, it is very difficult for measure- 
ments to be made of the temperatures in the boundary 
layer. The only substantial experimental data reported 
to date appear to be those of Stevens et al. [I], in 
the context of strip rolling. Understandably, with the 
complexities involved in the experimental deter- 
mination of the temperature field, much effort has 
been spent in the theoretical analyses of this problem, 
which may be broadly classified into two categories : 
numerical and analytical. 

The finite difference approach has been largely used 

in the numerical approach. Pioneer work was con- 
ducted by Peck et al. [2], who used a Lagrangian 
formulation in which the cylinder is considered fixed 
with respect to the co-ordinate system, with the 
boundary conditions rotating with it (i.e. periodic). 
Only radial heat transfer was examined in this work. 
A two-dimensional study which accounted also for 
the circumferential heat flow was carried out by Parke 
and Baker [3], while Poplawski and Seccombe [4] 
reported a model taking into consideration the heat 
transfer in the axial direction (i.e. along the axis of 
the cylinder) as well. Recently, Yuen [5] examined the 
transient thermal variation of a rotating cylinder with 
both radial and axial heat flows using the method of 
lines [6]. With the Lagrangian formulation adopted 
in the above studies, an extremely fine mesh (or time 
increments) needs to be used to ensure numerical 
stability and/or to obtain details of the temperature 
variations, especially around the heating region 
(which typically spans over a few hundredths of a 
radian in the rolling process). 

FIG. 1. Thermal system under study : rotating cylinder subject 
to surface heat fluxes. 
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NOMENCLATURE 

Gm function related to the Binomial T,t temperature at the cylinder centre 
coefficient, defined in equation (18) 1 peripheral speed of the cylinder 

k thermal conductivity ?‘ non-dimensionalized depth below the 
1 circumferential length of the cylinder cylinder surface 
N limit in series summation 1‘ ’ depth below the cylinder surface 
P Peclet number ?‘<,> .rl’c’,. 

p, P$ 
Q total surface heat flux per cycle in the Greek symbols 

heating zone 
7’(0, y) non-dimensionalized temperature of ;; 

thermal diffusivity of the cylinder 

normalized angle defining the cooling 
the cylinder location, Fig. 1 

f”‘(tI”, y ) cylinder temperature i,, function related to the Riemann zeta 
T:,(e,y) non-dimensionalized temperature function, defined in equation (I 9) 

component : contribution from the current ‘I normalized angular position at the end of 
cycle the cooling region, Fig. 1 

r,,(f3,~) non-dimensionalized temperature 0 normalized angular co-ordinate, 0”/(2n) 
component : contribution from all n angular co-ordinate 
previous cycles (JM( _r) normalized angular position where 

Tk, T’,, non-dimensionalized temperature the temperature at a depth y below the 
component defined in equations (15) --( 17) cylinder surface reaches a maximum 

T, theoretical non-dimensionalized i. normalized angular position of the cooling 
maximum temperature zone relative to the heating zone, Fig. 1 

TM(y) maximum non-dimensionalized ~(0, J) normalized temperature 
temperature attained at a depth y below cb normalized heating zone angle, Fig. 1 
the cylinder surface 11 normalized cooling zone angle, Fig. 1. 

To overcome the above difficulty, Tseng [7] sug- later extended by Patula [l2] who allowed for heat 
gested a first-order upwind scheme using an Eulerian 
formulation (in which the co-ordinate system is fixed 

in space such that the boundary conditions are fixed 
while the cylinder rotates with respect to the co-ordin- 
ate system). He demonstrated that good accuracy may 
be achieved with a reasonably fine mesh by this tech- 
nique. Recently, Quy et al. [8] compared results from 
the finite-element analysis for the above thermal prob- 
lem using four different schemes: linear elements, 
quadratic elements, upwind scheme and perturbation 
formulation. This work has also been extended to 
evaluate the thermal stresses in the cylinder. In 
addition, Chow and de Hoog [9] have used a per- 
turbation formulation to arrive at a Fredholm integral 
equation of the second kind, which was then solved 

numerically. 
On the analytical front, the separation of variables 

and the formulation using moving line sources have 
largely been used. These studies were carried out with 
various degrees of sophistication in the specification 
of the boundary conditions. Pawelski [IO] employed 
the separation of variables technique to study the 
steady-state temperature of a rotating cylinder with 
heat flow assumed to be restricted in the radial direc- 
tion only and the surface temperature taken to be 
prescribed (instead of prescribed heat flux). Haubitzer 
[l l] presented an improved analysis which also 
included the circumferential heat flow. This work was 

fluxes to be specified on the cylinder surface: a uni- 
form heat flux in the heating region and a constant 

heat transfer coefficient in the convective cooling 
region, and by Yuen [I31 who generalized the for- 
mulation to allow for any prescribed heat flux and 
convective heat transfer coefficient distributions over 
the cylinder surface. In these works, the boundary 
conditions are expanded in Fourier series in the cir- 
cumferential direction and, hence, many terms are 
needed to be retained to achieve a reasonable degree 
of accuracy around the heating region. This invariably 
requires excessive computing time if details of the 
thermal boundary layer are to be examined [12]. 
although substantially less terms need only be retained 
if the overall bulk temperature of the cylinder is sought 
(e.g. see Yuen [14]). 

A study of the above thermal problem using the 
Green’s function formulation of a moving heat source 
[ 151 was first reported by Cerni [ 161, who developed 
analytical expressions for the transient temperature 
distribution in a rotating cylinder. In his formulation. 
a uniform heat flux intensity in the heating region 
and convective cooling with a constant heat transfer 
coefficient over the rest of the surface have been 
assumed. In addition, the transient effect was com- 
puted assuming that the decrease in heat loss from the 
roll surface followed an exponentially decaying trend 
(with respect to time). A similar formulation was 
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adopted by Bryant and Heselton [ 17, who examined 
only the steady-state temperature but allowed for a 
non-uniform heat flux distribution in the heating 
region. By discretization, this heat flux distribution 
was matched with another analysis which examined 
the heat transfer in the body which was in contact 
with the rotating cylinder. 

Recently, Yuen also used the moving heat source 
formulation to examine thermal exchanges between 
two semi-infinite sliding solids in contact over a finite 
region. The heat flux partition to each solid was deter- 
mined and the resulting temperature fields in the solids 
evaluated. These studies, made in the context of strip 
rolling, considered boundary conditions where one 
solid had a bulk temperature different from the other 
[18, 191, where heat flux is generated at the contact 
region [20], and where heat flux is generated in the 
solids [21]. Asymptotic solutions based on high mov- 
ing speeds (more precisely, high Peclet numbers) of 
the solids have been derived from these analyses. The 
closed-form expressions derived therein are simple 
and provide good accuracy without demanding 
excessive computing time as necessitated by some of 
the numerical methods discussed previously. In this 
paper, the technique developed in the earlier studies 
[18-211 is further applied to consider the thermal 
problem of heating/cooling of a rotating cylinder. In 
order to facilitate analytical solutions, only uniform 
heat flux intensities in the heating and cooling regions 
are considered here. Although this assumption some- 
what simplifies the actual heating/cooling conditions 
as observed in most practical situations, the analysis 
enables simple closed-form solutions to be derived. 
The parametric dependence of various physical vari- 
ables can be readily identified from these expressions, 
hence improving our understanding of the thermal 
process. 

2. BASIC FORMULATION 

Consider a cylinder rotating at a constant speed 
with surface heating and cooling at prescribed regions 
as shown in Fig. 1. When the rotational speed is high, 
a thin thermal boundary layer is developed on the 
cylinder surface at steady-state. In the analysis below, 
the following non-dimensionalization will be made : 

(i) temperature T” by the temperature at the centre 
of the cylinder Ti and the total surface heat flux per 
revolution Q in the heating region such that the non- 
dimensionalized temperature T is given by 

T(&Y) = 
To@', y”) - To, 

Q/k 
(1) 

where k is the thermal conductivity of the cylinder, 
(ii) the depth below the cylinder surface (in the 

radial direction) y” by the circumferential length I of 
the cylinder such that the non-dimensionalized depth 
y is 

y+, (2) 

(iii) the angular co-ordinate 8” by 2w (radians) such 
that the non-dimensionalized angle 0 is 

6;. (3) 

Let the periodic surface conditions be given by 

i 
-i forO<f3<4 

i 

0 

$?,O) = 1 

for 4 < 0 < /3 

for p < t? < q (4) 

s 

10 forn<B<l 

where 
ti=rl-P (5) 

and 4, /I and q are non-dimensionalized angles 
governing the heating and cooling regions as shown 
in Fig. 1. 

For the above boundary conditions, heating with 
uniform intensity (Q/d) starts at 0 = 0 and ends at 
0 = 4, and heat extraction of uniform intensity (Q/$) 
starts at 6’ = p and ends at @ = q, as shown in Fig. 
1. The rest of the cylinder surface is assumed to be 
insulated. Note that with the boundary conditions of 
equations (4), the heat input equals heat extraction 
on the cylinder surface for each revolution (for steady- 
state condition). Note also that the centre temperature 
Ti of the cylinder is an independent parameter (i.e. a 
prescribed variable). 

It has been shown [22] that the non-dimensional 
thermal boundary layer thickness is of the order Pm ‘I’, 
where P is the Peclet number defined as 

Here, u is the peripheral speed and GI the thermal 
diffusivity of the cylinder. 

In most applications, the Peclet number is high (of 
the order 3 x 10’ to 1.5 x IO6 for strip rolling) and 
hence the thermal boundary layer on the cylinder 
surface is very thin. In this boundary layer, the cur- 
vature effect becomes negligible and the above prob- 
lem can be approximated by a thermal system with a 
semi-infinite medium in Cartesian co-ordinates (0, y). 
Yuen [18] has shown, based on a Green’s function 
formulation, that the temperature field of a semi-infi- 
nite body subject to surface heat fluxes over the region 
0 = t&l is given by 

x K,{P[(B-8’)2+y2]‘12} de’ for 0 < 0 < 1, (7) 

where K,{ } is the modified Bessel function of the 
second kind. With i?T/&$,,, of the above integral 
expressed by equation (4), T, gives the cylinder tem- 



perature in the thermal boundary layer induced by (7) and (8) with the boundary conditions of equations 
the surface heat fluxes of the ‘current revolution’. The (4) may be evaluated, giving 
contribution from the previous revolutions, T,,(U, J)), 
may be obtained by summing their effects as follows : TJ0.y) = 

i 
for 0 < II < ri, 

x K,{P[(n+H-Il’)‘+y’]“‘}dU’ for 0 < U < 1 (8) 

and the overall temperature in the boundary layer at 
steady-state is thus given by 

VU,v) = Ta(U,Y) + Th(U,Y). (9) 

3. SOLUTION 

3.1. General solution 

From the earlier results of Yuen [20], it can be 
shown, for P x 1, that 

2 1.1 

+j i 

I.2 
P 

(U - 0,) ‘I2 ierfc 
I II 2(tFL$~) 

-(U-U,)‘~‘ierfc[2(~~b~)j”*~ 

for U > 0, 

(10) 

where ierfc( ) is the repeated integral of the com- 
plimentary error function. 

Making use of this result, the integrals in equations and 

Table I. Calculated normalized temperature at selected positions based on the 
truncated series solution of equation (12) 

Normalized temperature. v 

PI"? IO 

‘4”,, 
Correct 

100 IO00 10000 values: 

0 0 -0.5523 -0.5805 -0.5901 -0.5913 -0.5935 
0. I 0.7253 0.6973 0.6880 0.6834 0.6844 
0.75 0.0832 0.0565 0.0470 0.0450 0.0436 
1 -0.5543 -0.5806 -0.5901 -0.5913 -0.5935 

0.1 0 -0.4107 -0.4388 -0.4482 -0.4529 -0.4518 
0.1 0.3875 0.3595 0.3502 0.3454 0.3465 
0.75 0.0828 0.0561 0.0469 0.0445 0.043 I 
I -0.4126 - 0.4389 ---0.44x3 -0.4529 -0.4518 

0.5 0 - 0.0624 - 0.0900 - 0.0994 --0.1003 -~0.1030 
0. I --0.0546 -0.0821 -0.0917 -0.0981 -0.0951 
0.75 0.0725 0.0462 0.0366 0.0339 0.0333 
I -0.0642 -0.0901 -0.0994 -0.1003 -0.1030 

Input data used : C#J = 0.1, fi = 0.75, I/I = 0.25. 
t From the last column of Table 3. 
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-(n+e-4) “‘ierfc [2(.$‘,)]“‘) 

-$ ; “2ng, 
0 ( 

@+0-B) r/zierfc[2(n$lPJi2 

-(n+B-q)112ierfc [2(n$yV)jr’2} 

forO<&l. (12) 

It should be noted that when n >> 1, all terms higher 
than 0(nm3/‘) in the series of the above equation 
cancel out with each other, and hence the series in 
equation (12) is bounded. 

Unfortunately the series solution of equation (12) 
poses problems in its numerical computation since 
these series are very slowly convergent ; an excessive 
number of terms needs to be retained to achieve 
reasonable accuracy, as illustrated in the numerical 
results given in Table 1. In this illustration, the non- 
dimensionalized temperature has been normalized, 
for convenience, by the ‘theoretical non-dimen- 
sionalized maximum temperature’, T,,,, which is 
located on the surface of the cylinder at the end of the 
heating zone, thus 

where [20] 

T(Q, Y) 
V(@,Y) = 7 (13) 

m 

(14) 

This theoretical maximum temperature T, is one 
which would be reached if the contributions from the 
previous revolutions were neglected. It has tra- 
ditionally been used in estimating the peak tem- 
perature reached in rubbing surfaces and is also 
known as the ‘flash temperature’ [23] in the context 
of sliding and wear. 

An alternative computational scheme is adopted to 
overcome the above problem: the series in equation 
(12) is summed for the first N terms, where N is a 
sufficiently large number. The rest of the series is then 
summed after expanding each term for large n. Hence, 
equation (12) can be written alternatively as 

T&3, y) = qe, Y) + m&Y) (15) 

where 

T;(Q,y) = f f “‘~~~ 
0 1 

(n+8)“2ierfc[&]“2 

-(n+0-$) ‘j2ierfc [2(nz’,)]“2} 

forO</3< 1 (16) 

and T{ has the same form as TL (equation (16)), with 
the lower and upper limits in the summations replaced 
by N and cc, respectively. 

When N is large, the terms in the infinite series of 
TL may be expanded for large n to give, after some 
mathematical manipulations : 

em-(e-q5)m co-BY-(Q-v)” X 
4 - * ->I (17) 

where C,,, k = 0, 1,2,. , are related to the Binomial 
coefficients, defined as 

l-(:-k) 

r(m+ l)r($-k-m) 
(18) 

and 

[JZ) = f km’. (19) 
k=N 

Here IJ ) is the Gamma function and lN( ) is related 
to the Riemann zeta function ([ , is the Riemann zeta 
function). Since iN(z) decreases rapidly as N and z 
increase, as illustrated in Table 2, relatively few terms 
need to be retained in equation (17) to achieve reason- 
able accuracy. This is illustrated in Table 3 based 
on the same heating/cooling conditions examined in 
Table 1. In these calculations, the series in equation 
(17) has been truncated at m = 6 and terms higher 
than O(P3y6) have been neglected. It can be seen that 
excellent accuracy is achieved, even for N as small as 4. 

The merit of this alternative scheme is best demon- 
strated in a comparison of the computational times 
between the two methods of solution, as shown in 
Table 4. Clearly, the more efficient scheme using equa- 
tions (I 5)-( 17) requires much smaller computational 
times, yet producing more accurate results. In 
addition, the timings using a previous series solution 
[13] are also included in the table. It was noted in that 
work [ 131 that at least 500 terms needed to be retained 
in order to achieve a 1% solution accuracy. These 
comparisons clearly illustrated the superiority of the 
alternative computational scheme. 
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Table 2. Illustrative values of the function CL.(:) 

1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
1.5 
x.5 

iv’ = 4 

1.0664 
0.1006 
1.6962~ IO ’ 
3.3856~ IO ’ 
7.3157 X Io~~J 
1.6538 x 10m4 
3.8464x IO-’ 
9.1177X lo-+ 

i.\(--1 
,v = 20 h’ : IO0 IV = 200 

0.4529 0.2005 0.1416 
7.7389 x 10 i 6.7169 x IO ’ 2.3659 x IO ’ 
2.3799 X IO a 4.0503 X IO (’ 7.1154x IO 
8.7109 X IO_ h 2.9075 X IO_ y 2.5476 X IO ‘) 
3.4710x IO - 2.2727 X IO I” 
1.4546~ IO ’ 
6.3030 x IO ‘(’ 

_; 

+ All results smaller than IO “’ are omitted. 

Table 3. Calculated normalized temperature at selected positions 
based on the alternative computational scheme (equations (15) 

(17)) 

Normalized temperature, 1’ 

P ” y 0 !V -= 4 N = 20 I\- = 100 N = 200 

0 0 
0.1 
0.75 

0. I 0 

0.1 
0.75 

0.5 0 
0. I 
0.75 
I 

Input data : 46 = 0. I, p -z 0.75. I// = 0.25. 

-0.5935 -0.5935 .- 0.5935 -0.5935 
0.6843 0.6843 0.6843 0.6844 
0.0435 0.0435 0.0435 0.0436 

-0.5935 -0.5935 --0.5935 -0.5935 
PO.4518 -0.4519 -0.4519 -0.4518 

0.3465 0.3465 0.3465 0.3465 
0.043 I 0.043 I 0.043 I 0.043 I 

-0.451’) PO.4518 ~__0.4519 -0.4518 
-~o.l030 -0.1030 - 0.1031 -0.1030 
-0.0951 -0.0951 0.0951 -0.0951 

0.0332 0.0332 0.0332 0.0333 
-0.1030 -0.1030 -~0.1031 -0.1030 

3.2. Swfizce temperatures vectivc heat extraction rate. By setting y = 0 to the 

Of special interest is the surface temperature of the previous results, simple expressions for the surfdacc 
cylinder where rapid thermal variations occur. This temperatures can be obtained : 
surface temperature distribution has important impli- 
cations in practical applications since it could affect. ~J(I.0) = 

for instance, the lubricant characteristics (in the case ’ z 
of the rolling and grinding processes) and the con- for 0 < 0 < q5 

Table 4. Comparison of the computalional times 
for the results given in Tables I and 3, and for 

those using a previous series solution [ 131 

Computational 
time 

Table I : ‘L‘S, = 10 I.8 
100 17 

1000 173 
10000 I730 

Table 3 : N = 4t 1.0 
20 3.8 

100 18 
200 35 

Ref. [I31 : ,1 = 50: 15 
100 86 
200 602 
500 8680 

____ _~ ._~ 

i Reference. 
$ n is the number of terms retained in the series 

solution. 

for ri, < 0 < /j 

i 

and 

{(O-/I)’ ‘-(0-q)’ ‘1 for r/ < 0 < 1 

(30) 
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- ~l(n+e-8)“‘-(n+o-gt”1 

forO<Q<l. (2I) 

Again, for efficient numerical computation, Tb(O, 0) 
may be written as a sum of Z’i(f?, 0) and T{(B, 0) where 

for 0 -c 0 -=c 1 (22) 

for 0 < Q < 1. (23) 

Here, Ccm and JN() are given by equations (18) and 
(19)? respectively. 

3.3. Speciat case of line heat s~ur&e~sink 
Another case of interest is when the beating and 

cooling regions are small (compared to the cir- 
cumferential area of the cylinder) such that the heat 
fluxes can be considered as line sources. In this case, 
Q, -+ 0 and J, + 0. It can be shown that the temperature 
field of the cylinder is then given by 

foPo<B<p ! 
exp { - W/CW 

(2aPD) r/z 

7X.5) = exp f - PY%~@)) exp f -fY%W-B% ~-- 
(27rP0)“2 (27rP(e-p)] 1/z 

i for p < B < 1 (24) 

Again, for computational purpose, T,, may be evalu- 
ated by summing to N- 1 terms (TL) with the remain- 
der (7;) summed, after a suitable expansion : 

forO<Bcl. (26) 

Note that the surface temperature in this case is 

forO<@< 1. (28) 

Hence, the surface temperatures tend to co and - CQ, 
respectively, at the heating and cooling locations 
(0 = 0 and p). However, the temperatures are finite 
below the cylinder surface at these angular locations. 

4. ~U~ERICAL RESULTS 

Some numerical results based on the above solu- 
tions are discussed below. In all computations, N has 
been taken to be 20 and 112 = 6 with terms up to 
0(P3y6) retained. 

Figures 2(a) and (b) illustrate the contribution to 
the overall temperature from the surface heat fluxes 
during the current revolution and from all past rev- 
olutions, respectively ; the combined effect is shown in 
Fig. Z{c). In these illustrations, the cooling is applied 
at the end of a cycle (#I = 0.75 and @ = 0.23, which 
is immediately followed by heating (since heating is 
assumed to be applied at the beginning of each cycle). 

It can be seen from Fig. 2(a) that the thermal ex- 
changes on the cylinder surface contributed from the 
current revolution induce rapid variation of the tem- 
perature on the cylinder surface, but the large thermal 
variation does not extend much into the cylinder sub- 
surface. The surface temperature increases rapidly in 
the heating zone (0 < 0 < #), decreases exponentially 
between the end of the heating zone and the start 
of the cooling zone (QI < 8 < Bf due to the inward 
diffusion of the thermal energy driven by the thermal 
gradient in the radial direction which is built up in the 
beating region, and decreases further in the cooling 
zone (B < 0 c r). At the end of the cooling zone, the 
normalized surface temperature becomes negative (i.e. 
below the centre temperature). 

On the other hand, the surface heat Auxes of the 
past revolutions have a less dramatic effect on the 
surface temperature, as shown in Fig. 2(b). The major 
effect is at the start of each cycle (when 0 is small) 
where the temperature is low; this is caused by the 
cooling zone from the previous revolution (which just 
precedes the heating zone in this illustration) inducing 
a chilling effect at B = 0. 
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E 0.50 
c 
3 < 0.25 

Gf 0.00 

0.25 0.50 0.75 

(a) Contribution fro: “current revolution”. 

0.25 0.50 0.75 

(b) Contribution frornq’previous revolutions”. 

0.50 

(c) Com&ed effect. 

FIG. I!. Temperature distribution in the rotating cylinder (4 = 0.1. {i = 0.75. $ = 0.25). 

The combined effect of the above two factors, as 
shown in Fig. 2(c), produces a temperature dis- 
tribution primarily governed by the first factor, except 
that the temperatures in the heating zone are sub- 
stantially reduced. Note also that the max~muin SUT- 
t&e temperature occurs at the end of the heating zone 
(0 = 4). However, below the surface, the maximum 
temperatures occur at locations beyond the heating 
zone owing to the inward thermal diffusion from the 
surface. 

4.2. E#kct of cooling location and contact angk 

Figure 3(a) illustrates the surface temperature vari- 
ation with varying location angles ,5 of the cooling 
zone. It can be seen that a cusp is formed at the end 
of the cooling zone: this is caused by the reverse 
thermal diffusion (from the sub-surface back to the 
surface) after cooling is completed. When cooling is 

located at the end of the cycle, the cusp disappears 
since it then merges into the heating zone. The peak 
surface temperatures (at 0 = c$) and the minimum 
temperatures (at 0 = ?I) do not change appreciably as 
($ varies: both the maxinlum and minimum tem- 
peratures decrease siightly as fl increases. 

Figure 3(b) illustrates the effect of varying the 
cooling contact angle I/I. The cusp becomes less pro- 
nounced as the contact angle increases ; however, the 
maximum and minimum temperatures attained arc 
fairly much unchanged. 

It was mentioned in Section 3.1 that the tem- 
perature T,,, (equation (14)) has been traditionally 
used to estimate the peak temperature attained in 
rubbing surfaces (such as grinding, rolling, etc). This 
temperature is obtained by neglecting the con- 
tributions from the previous revolutions, i.e. the sur- 
face heating is assumed to apply only in the region 



The thermal boundary layer in a rotating cylinder 613 

-0.25 
0.00 0.25 0.50 0.75 1.00 

A 
(a) Cooling zone angle, ly=O.25 

< 0.50 

9 
E 0.25 

-0.00 

-0.25 
0.00 0.25 0.50 0.75 1.00 

(b) Cooling loca”,on angle, p=.Ol 

FIG. 3. Effect of the location and contact angles of the cooling zone on the surface temperature of the 
cylinder ($ = 0.01). 

0 < Q < 4 and the surface is fully insulated elsewhere 
(Q < 0 and 0 > 4). For periodic surface heat fluxes, 
this peak temperature could be substantially reduced 
under certain cooling configurations such that the 

normalized peak temperature v(4,O) is less than unity 
as indicated in Fig. 2(c). This effect is examined in 
Fig. 4 where v(4,O) is plotted against the heating angle 
4 for various cooling locations relative to the heating 
zone (A = p-4) and contact angle II/. It can be seen 
that v(&O) decreases as 4 increases, as the cooling 
contact angle $ increases, and as the cooling zone is 
positioned further away from the heating zone. In 
fact, a reduction of 4&50% of the peak temperature 
can be experienced with certain cooling configur- 

ations, as illustrated in Fig. 4. Hence, it is important 
to take into consideration the effect of the periodic 
surface heat fluxes when predicting the peak tem- 
perature attained in the cylinder if an over-estimation 

is to be avoided. 

4.3. Maximum and minimum temperatures 
In the previous illustrations, the cylinder tem- 

peratures have been plotted in a normalized variable 
v, the normalizing parameter T,,, is given in equation 
(14). It can be seen from that equation that T,,, varies 
with the heating angle 4. In order to illustrate the 
variation of the actual cylinder temperature with the 
heating and cooling locations while keeping the total 

1 .oo 

il:~~ 
0.60 - (.75,0) 

0.50 " .'I. " .I"'. ""'I"'. I"'. 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 

4 

FIG. 4. Effect of the heating and cooling location and contact angles on the peak temperature reached on 
the cylinder surface (A = B - ~5). 
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heat fluxes per revolution Q constant, a more appro- 
priate parameter II/&‘:’ should be adopted since 

which is independent of 4. 
Of interest are the maximum and minimum tem- 

peratures in the cylinder, which are both located on 
the surface, the former at the end of the heating zone 
(i.e. r(@, 0)) and the latter at the end of the cooling 
zone (i.e. T(q, 0)). These temperatures have important 
implications on the change in metallurgical properties 
in the cylinder sub-surface (if the maximum tem- 
perature is excessively high), the lubricant perform- 
ance? the surface heat extraction rate (for convective 
cooling) and the thermal fatigue. In addition, the high 

thermal gradient, which generally occurs across the 
heating region (since C#J is normally small compared 
to the cooling contact angle I/I), is also of interest since 
it provides an estimate of the thermal shock on the 
cylinder surface, which is indicated by the overall tem- 
perature jump across the heating zone (T($. 0) - 
T(0, 0)). The effects of variation in the heating/cooling 

angles on these temperatures are illustrated in Fig. 5. 
It can be seen, from Fig. 5(a), that the heating angle 
C#I largely governs the peak temperature : the smallet 
the heating angle, the higher is the peak temperature. 
The effect of the cooling locations (i and I/I) is rela- 
tively insignificant. On the other hand, the cooling 
contact angle $ has a significant effect on the mini- 
mum temperature as shown in Fig. 5(b) : the smaller 
the contact angle, the lower is the minimum tem- 

2.50 

o.oot.“‘i”“l”“l”“i”“,““f 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 

(a) Maximum temperature (atthe end of the heating zone). 

0.05 0.10 0.15 0.20 0.25 

(b) Minimum temperature (atqhe end of the cooling zone). 

0.05 0.10 0.15 0.20 0.25 

(c) Temperature differen& across the heating zone. 

FIG. 5. Variation of the cylinder temperature at selected surface locations with the heating and cooling 
configuration. 
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(a) Cooling immediately follows heating (Z%=O). 

10.0 

7.5 -_- _____ -__ h-0.75, I@ 
LS- 3 

2 5.0 

2 
2.5 

0.15 

@Y 
(b) b0. 

FIG. 6. Thermal penetration below the cylinder surface. 

perature. In addition, the minimum temperature tends small. Otherwise the effect of # on the minimum tem- 

to be higher when cooling follows heating immediately perature is generally insignificant. Again, the heating 
(I = 0). In this situation, the heating angle Cp has a angle q5 is a governing factor on the temperature jump 
moderate effect when the cooling contact angle is across the heating zone as shown in Fig. 5(c). The 

0 2 4 6 8 

(a) Peak temperature on the cylinder surface. 

0 2 6 8 

(b) Location of the peak temperature [see (a) for legend]. 

FIG. 7. Comparison of the results from the present analysis with those from a single-cycle analysis [20] for 
the peak temperature and its location on the cylinder. 
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FIG. 8. Surface temperature on the cylinder based on line heat sources (both heating and cooling). 

cooling locations (i and $) do not have much effect 
except for the case when cooling just precedes heating 
with a small cooling contact angle (4 > 0.2, i. = 0.75 
and $ = 0). In these circumstances, the intense 
cooling induces a low cylinder temperature prior to 
heating, hence increasing the temperature jump across 
the heating zone. 

4.4. Thermal penetration 
Another parameter of interest is the maximum tem- 

perature T,(y) attained at a given depth below the 
cylinder surface. This parameter provides a quanti- 
fication of the thermal penetration into the cylinder 
and, in the case of strip rolling, allows the extent of 
thermal damages (‘fire cracks’) to be estimated. The 
variation of this temperature with P”‘J~ is shown in 
Fig. 6 for various heating angles 4, with the effect of 

the location of the cooling zone relative to the heating 
zone (2,) illustrated. It can be seen that, again, the 
maximum temperature TM decreases rapidly with 
increasing heating angle, especially near the cylinder 
surface (Pii2v < 0.1) ; and decreases with increasing 
depth into the cylinder, especially for small heating 
angles. The location of the cooling zone and the 
cooling contact angle do not have a significant effect 
on TM (Fig. 6(b)) except when cooling immediately 
follows heating (2 = 0) with small heating and cooling 
angles, the effect then becomes significant (Fig. 6(a)) : 
for C$ = 0.01 and $ = 0, the surface tends to be hotter 
(at P’/‘y = 0) while the thermal penetration is less 
significant such that TM/(T,,,cj’2) is smaller (at P""J' 
greater than around 0.1) with respect to cases where 
#I > 0.01 or r/j = 0.75. This observation has important 
implications in a cooling system design : different stra- 
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FIG. 9. Temperature distribution in the cylinder based on line heat sources (both heating and cooling). 

tegies need to be adopted if one prefers to minimize maximum temperatures occur is plotted in Fig. 7(b). 
the thermal penetration rather than the maximum It is found, again, that 13~ depends also on the heating/ 
temperature. cooling configurations. 

In a previous analysis [20] where only heating of 
one cycle is considered, the normalized temperature 
TM (y)/T,,, was shown to correlate with the parameter 
Pi’*yg, where P+ and yb are the Peclet number and 
dimension based on the size of the heating zone (P4 = 

~v~c#J/u, y, = y”/(Z$)). On plotting the results of Fig. 6 
in these terms (only selected curves are plotted), to- 
gether with the result of the previous analysis [20], as 
shown in Fig. 7(a), it can be seen that the heating and 
cooling locations and contact angles could influence 
TM substantially for the case of periodic heat fluxes. 
The maximum temperatures in the cylinder could be 
grossly over-estimated if the heating/cooling con- 
figurations and periodic heating effects are neglected 
in the analysis. The angular location &, at which these 

4.5. Line heat sources 

Figure 8 illustrates the surface temperature of 
the cylinder when heating and cooling span over a 
very small zone such that they can be considered as 
line sources. In these illustrations, the parameter 
($cP) ‘/%( T” - Tk)/Q, which is equivalent to 
T/(T,&“*) adopted previously, is plotted (note here 
that T, is infinite). Figure 8(a) gives the contribution 
of the heating/cooling from the current revolution, 
while Fig. 8(b) gives the effect of heat sources in all 
past revolutions and Fig. 8(c) illustrates the combined 
effect. It can be seen that the temperature decreases 
rapidly after the heating zone (0 = 0), then drops 
further during cooling, thereafter increases rapidly 
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again to reach a temperature close to the cylinder 
centre temperature. It is noted that these temperature 
variations are in the form of & I” (see, for example, 
equation (24) with J = 0). On the other hand, the 
contribution from the past revolutions is most pro- 
nounced when the cooling zone is close to the end of 
the ‘cycle (e.g. fl = 0.99 in Fig. 8(b)). In this case. 
the temperature component at small 0 is below the 
cylinder centre temperature. This in turn produces a 
lower overall temperature at small 0, as shown in Fig. 
8(c). From this last figure, it can be seen that. apart 
from the case where cooling is close to the beginning or 
the end of the heating zone, the temperature variations 
just after heating and just after cooling arc largely 
independent of [j. Hence, the heating and cooling 
effects appear not to interact much with each other 
provided that they are sufficiently Tar apart. 

The temperature distribution at various depths 
below the cylinder surface is shown in Fig. 9 for various 
values of p, It can be seen that an earlier application 
of cooling after the heating zone results in a marginally 
smaller penetration of the cooling effect into the cylin- 

der (p = 0.25, cf. /r = 0.75). The same observation can 
bc made for heating after cooling : the penetration of 
the heating effect for fl = 0.75 is marginally smaller 
than that for/j = 0.25. 

5. CONCLUSION 

The thermal boundary layer in the subsurface ol 
a rotating cylinder subject to surface heat fluxes is 
examined in this paper. Based on an asymptotic analy- 
sis, a series solution for the temperature field is derived 
for large Peclet numbers. A further expansion of the 
series solution results in a form which converges 

rapidly and hence offers an extremely efficient scheme 
for computation. This study provides a much 
improved analysis of the problem at hand over pre- 
vious numerical or series solutions, in which numeri- 
cal instability and/or slow convergence are typical 
for advection-dominated heat transfer problem with 
localized heat fluxes. This work finds applications in 
strip rolling, grinding and other related industrial pro- 
cesscs. 
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